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SUMMARY
- With the increasing use of advanced fibre reinforced materials and the growing

acceptance of damage tolerant design principles, three-dimensional finite element analysis
is being used much more frequently. This paper presents some thoughts on the optimum
use of three-dimensional isoparametric elements. Most commonly used element types
are evaluated.
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1. INTRODUCTION

In recent years, the damage tolerant design philosophy has been adopted by the aerospace
industry. One requirement of this design philosophy is a detailed knowledge of the stress intensity . O

factors along a surface flow. This knowledge can, in general, only be obtained by a detailed
three-dimensional finite element analysis.

At the same time as damage tolerant design has become important, bonded repair technology
(crack patching and strategic reinforcement) has also arisen as a highly cost effective method
for extending the life of damaged components1,2 ] This procedure requires a detailed knowledge
of the peel and shear stresses in the adhesive bond and, hence, often requires a full three-
dimensional analysis. Since the adhesive thickness is usually very small, typically 0 1 mm,
the elements used to model the adhesive often have very large aspect ratios with values of the
order of 200 : 1 being common.

A similar problem arises in the study of impact damage in fibre composite laminates13 ".
In this case each ply, which is approximately 0. 127 mm thick, needs to be modelled individually
and the resulting elements have very high aspect ratios. As a result, the numerical solution to
this problem is often highly ill-conditioned.

The present paper examines how each of these problems may best be tackled. Unfortunately,
there is no single procedure which can be recommended generally.

2. 3D ISOPARAMETRIC ELEMENTS

For isoparametric elements, the shape function N1(f, 77, C) used to express the x, y, z
coordinate system in terms of the curvilinear coordinate system, , ,/, are also used to define the
displacement functions u, v and w within the element. Hence,

S= - [IN,, IN 2 .. . INp]be  (2.1)

=N&

and

= = [INi, IN 2 ... INp]cpe  (2.2)
(Y• =..

= N.e

Here
&eT = (Ul, V1, WI, Up, Wp) (2.3)

and"""

and peT - (XI, Yi, Z, .... Xp, yp, Zp) (2.4)

where ui, v, and w, are the displacements at the ith node which has coordinates xi, yj and z:.
" The element is considered to have a total of p nodes and I is a 3 x 3 identity matrix. With this
" notation, the strain vector c - (Cx, ey, Cz, yxV, yyz, zx)T can be expressed in the form

, 6 Bso (2.5)

-p .
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FIG. 1 THREE DIMENSIONAL ISOPARAMETRIC BRICK ELEMENTS



so that the stiffness matrix k for the element can be written in the form%% .I I I

k = f (2.6)

In equation (2.6), J is the Jacobian of the transformation and D is the elasticity matrix, i.e.

0 = (erx, ay, Oz, 'Txy, Tyz, "zx)T

= Dc (2.7)

The integrals on the right hand side of equation (2.6) are evaluated using Gaussian quadrature.
If the element has straight sides which intersect at right angles, then J is a constant. As a result,
the order of the Gaussian quadrature which is required to integrate equation (2.6) exactly
depends on the number of nodes and the curvature of the sides of the element; see Table I for
the case when J = const.

-.m

TABLE I

Intergration Order Required
-. 3%

Number of nodes

20 24 28 32

Full integration 3x3x3 4x4x2 4x4x3 4x4x4
Reduced

integration 2x2x2 3x3x2 3x3x2 3x3x3

A number of papers have suggested that the optimum integration order is one order less
than that required to integrate equation (2.6) exactly. This integration scheme is called reduced
integration and provides an underestimate for k. It has also been suggested that reduced inte-
gration be used to evaluate the mass matrix

i is NNTjd, d,7d (2.8)

54

When using the twenty-noded brick elements to model plate bending problems, [4, 5] have
shown that reduced integration gives very accurate results for aspect ratios alt up to 1500/1,
where t is the thickness of the plate and a is the length of the longest side of an element of the
plate. Indeed [6] has shown that for two dimensional problems, reduced integration allows
the accurate solution of problems involving the load transfer across a narrow interface.

In a recent paper, 2] it was clearly shown that for vibration problems, the best results are
obtained using reduced integration for the stiffness matrix and full integration for the mass
matrix. This work was particularly interesting since both finite strip and finite element methods
were considered.

The purpose of this paper is to investigate the accuracy of elements which have large aspect
ratios. It should be mentioned that in this case, the accuracy of the results depends on the inte-
gration method adopted and on the word length of the computer used. The present investigation
used double precision on a VAX 11/780.

3
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3. VIBRATION ANALYSIS

We will begin our study by considering a thin, square plate of thickness t with sides of
length b (= 152-4 mm). The edges of the plate are assumed to be simply supported and a total of
thirty two elements of equal size is used to model one half of the plate. For this problem, the

* frequencies wm are known to satisfy the following equation

-mnb 2 
/i2(1 _v) (m2 +n 2 )V2  ,.,, (2.9)

'4X E/t
where , is the density and E and v are the Youngs modulus and Poisson's ratio of the plate
respecively. The errors in the numerically predicted frequencies are given in Table 2 for decreasing
plate thickness, i.e. for increasing aspect ratio.

TABLE 2

Percentage error in frequencies

Element aspect ratio
15 30 100 200

Mode
'" " No. of nodes

per element 20 24 32 20 24 32 20 24 32 20 24 32

1,1 0-4 10.50.1 0.1 11-1 0.6 7.2 4.8 4.8 0-3 33.1 10.7
1,2 0"6 10"9 0-3 1"1 12"2 1.6 4"2 18-9 7"5 8"4 43"0 20-4
1,3 5"7 7-2 1-8 2-7 17-8 9-2 30-1 40.4 28-9 57-9 84-9 58-8
2,3 4-0 11-4 1-2 4.9 12.6 2-4 9"7 18-9 12"2 37-0 46"9 "35-4
3,3 10-4 19-6 9-9 26-7 26-2 16-7 4"9 11-3 18-2 80-9 9-2 63-1
1,5 10-7 6-9 2-9 11.3 3-2 9.8 10-7 7-2 2-9 26-9 23-1 23-6

In this work, the stiffness matrix is evaluated using reduced integration whilst the mass matrix
is evaluated using full integration. The matrices and the solution are done in double precision.

One reason for conducting this research was to evaluate the applicability of these elements
in modelling delamination damage to fibre-composite laminates. Typically such damage has an
inplane dimension between 25 and 50 mm, whilst the ply thicknesses are 0- 127 mm. This results
in elements with aspect ratios in the range of 50 : I to 200 : 1. Consequently the upper limit b-I
on the aspect ratios considered here is 200 : 1. 7-7

From these results we see that the twenty four noded element gives consistently bad results
and, as a result, should not be used. For low values of aspect ratio, i.e. < 15, the thirty two
noded element performs better than the twenty noded brick. However, this does not seem to be
the case at higher aspect ratios.

This is in contrast to the results given in [5J where bending problems were considered and
where the thirty two noded brick was accurate up to aspect ratios of 1500. This may be due to
the computer on which the calculation was performed. Whilst the type of computer used
is not specifically mentioned in [5), it is claimed that the results are accurate to twelve decimal
places. This claim cannot be made in the present paper.

Although the results presented in Table 2 were calculated using full integration for the
mass matrix, reduced integration was also investigated. When reduced integration was used to
calculate the mass matrix, the errors were, in general, far greater and for the thirty two noded
element, the assembled mass matrix was singular at aspect ratios of 100 : 1 and 200 : 1.
Similarly the use of full integration to calculate the mass and the stiffness matrix resulted in
frequencies which were far too high.

4
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(a) Patched side of panel. (b) Unpatched side of panel.-
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4. CRACK PATCHING

In recent years, the Aeronautical Research Laboratories, Australia, have pioneered the use
of bonded fibre composite repairs to cracked metallic structures., ,l In the analysis of this
problem, the adhesive layer, typically 0.127 mm thick, the cracked sheet and the repair need to

be modelled separately resulting in elements with aspect ratios in the range of 50 1 to 200 :1.
In this section we will consider the repair of an edge crack in an aluminium sheet of dimen-

sions 150 mmx320mmx3.15 mm. The crack is 25.4mm long and is repaired by a semi
circular boron epoxy laminate with a radius of 80 mm and 0.889 mm thick and which has the

fibres running perpendicular to the crack. The moduli of the laminate are

Ell = 208"3 Gpa,

E22 = E33 = 25-4 GPa

G 13 = G23 = G12 = 7-24GPa,

V13 = V12 0.183

v23 =0.1667

The boron is bonded to the sheet using a low temperature cure paste adhesive with a Young's
modulus E = 1 89 GPa and a shear modulus G. = 0.76 Pa. The adhesive thickness is
nominally 0.165 mm thick, however since the adhesive used is a paste adhesive, its thickness
is difficult to control and may vary up to 0.20 mm. The repaired panel was prevented from
moving out of plane.

The model for this repair consisted of forty one of the twenty noded isoparametric bricks
and fourteen of the fifteen noded isoparametric elements representing the sheet, whilst the
adhesive and the repair each had twenty nine of the twenty noded bricks and thirteen of the
fifteen noded elements. Reduced integration was used for each element type.

A clip gauge was used to measure the opening of the mouth of the crack and the strain
in the patch at a point B near the crack tip was also measured (see figure 2). These measured
quantities are compared in Table 3 with those predicted numerically.

TABLE 3

Experiment Analysis

Clip gauge opening 0.041 mm 0.032 mm
Strain in patch at A i 30x 10- 3  i • 16x 10- 3

Given the uncertainty in the assumed values for the adhesive thickness and moduli, the
numerical results compare favourably with the experimental values. As a result, it appears that
the use of reduced integration for elements with large aspect ratio is acceptable for this problem.

At this stage it must be mentioned that reduced integration does not always work. Indeed
the authors have often encountered problems for which it gave erroneous results. In most of
these cases, accurate results could be obtained by using directionally reduced integration,
i.e. a 2 x 2 x 3 Gauss quadrature for the twenty noded elements.

Unfortunately there appears to be no way of forecasting when reduced integration will fail.
This situation is most unsatisfactory and when using reduced integration, the results should be
carefully checked to ensure that spurious mechanisms are not present.

6
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5. CONCLUSION

In this work we have seen that the twenty noded isoparametric element is unsuitable for
use when the aspect ratios are large. We have also seen that, when using double precision and
reduced integration, fairly accurate results can be obtained. However, it is clear that when
modelling delamination damage in graphite epoxy laminates, the conditioning of the problem

" ,', will improve if elements with large aspect ratios are avoided. To do this, a new super element is
required which will allow an arbitrary grouping of plies within the element.

Following this work one such super element was developed at A.R.L. The nex" stage in this
project is to use this new superelement in conjunction with the twenty noded brick to model
simulated delamination damage in a graphite epoxy laminate and to compare the predicted
surface strains with those measured experimentally.
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